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Background 

 Computational Fluid Dynamics (CFD) forms one of the core disciplines of 
modern engineering: 
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Background 

 The Finite Volume Method (FVM) is a conservative approach which aims at 
solving equations based on their integral form: 

 

 

 

 The core of the approach lies on the computation of fluxes at cell 
interfaces  these are then used to update the average conserved 
quantity in each control volume (or cell): 
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Where U is a vector of conserved 
quantities, and F is the associated 
vector of Fluxes of U across surface dS. 



Background 

 For the purpose of today’s presentation, we will restrict our investigations to 
the Euler Equations – for the compressible flow of an ideal, inviscid gas. 

 

 These can be written in PDE form as: 

 

 

 

 In order to apply the Finite Volume Method, we need to find a way to 
compute the fluxes F across each cell interface  EFM.  
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Background 

 Today’s talk focuses on the application of a kinetic-theory based method 
to the application of a transient FVM solver. 

 

 The method is Pullin’s Equilibrium Flux Method, or EFM, which computes 
fluxes across cell interfaces by taking moments around the Maxwell-
Boltzmann equilibrium particle distribution function. 

 

 Since this time, several researchers have proposed advancements of this 
technique – however, we will see that EFM serves as a useful start point for 
our investigation. 
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Background 

 The Maxwell-Boltzmann probability distribution function governing 
molecular velocities of a gas in thermal equilibrium can be written in 1D 
form as: 

 

 The flux of any conserved quantity can be computed by taking moments 
around this distribution function: 

 

 The EFM approach starts by splitting F into a forward and backward part: 
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Background 

 We can see that F+ describes fluxes due to particles with a positive velocity, 
while F- describes fluxes due to particles moving with a negative velocity. 

 

 Pullin proposed that, if particles were to move in free flight over the course 
of a time step, that positive moving particles must originate from the left 
hand side of an interface (and vice versa for negative moving particles) 

 

 This gives us the split fluxes as: 
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Background 

 Note: This means that the EFM approach does not allow the evolution of 
the particle velocity distribution over the time which particles travel. 

 

 This results in excessive numerical diffusion – particles are allowed to “fly” 
unhindered over a timestep.  

 

 Several authors have proposed fixes to this problem by using the BGK / 
Boltzmann Equations to evolve the particle distribution functions over time 
(and space) to obtain a better result (not investigated here). 
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Discretization of the FVM 

 Examine for a second this discretization: 
 
 
 

 We can solve for our value of 𝑈𝑈 at time level k+1 by: 
 
 Using values of both 𝑈𝑈 and F at time levels k  This leads to an explicit approach. 

 

 Using values of 𝑈𝑈 at time level k and F at time levels k+1  This leads to an implicit 
approach. 
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Discretization of the FVM 

 Let’s write the equations out for clarity – in 1D, we may write: 
 
 Explicit Form: 

 

 Implicit Form: 
 

 Fluxes at cell interfaces (i.e. i+1/2) are reconstructed: 
 
 

 Evaluations of (dF+/dx) and (dF-/dx) use slope limiting functions to maintain 
positivity. 
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Application of Explicit FVM 
 In the past, we have employed explicit techniques for application to 

parallel computing due to the ease of parallelization. 

 The result – a family of efficient solvers which run on both the Intel Xeon Phi 
and the GPU (AMD and Nvidia devices)  

This simulation required less than 3 minutes – from start to finish – using a GTX-Titan. 
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Application of Explicit FVM 

 When Cartesian grids where employed, the speedup – ratio of 
computational times for a single CPU core to that of the GPU – was 
computed to be very large. 
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Drawbacks of Explicit Approach 

 There are disadvantages to using Explicit time-stepping approaches: 
 
 The size of the time step of limited based on the stability requirement of 

the smallest cell in the flow field – which is often several orders of 
magnitude smaller than the average cell size when using adaptive 
grids. 
 

 We cannot solve for a steady flow*. 
 

 One possible way we can avoid these problems is to use an implicit time-
stepping procedure to solve the governing equations.   
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Implicit formulation of EFM 

 A casual inspection of our governing equations reveals they are 
fundamentally non-linear: 

 

 

 In addition, our split fluxes – which are used to compute net fluxes in our 
discretization – contain erf(x) and exp(-x2) terms, which are also non linear. 

 This gives us – for example, in a 1D problem: 
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where k indicates the time-level of the solution and A, V do not 
change in time. 

Implicit formulation of EFM 

 It should be easy to see that a linear decomposition in this case is impossible. 

 

 Rewrite the governing equations into residual form: 

 

 

 We need an approximation for the time derivative. One way might be: 
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Implicit formulation of EFM 

 We need to solve our unknowns – which, interesting enough, aren’t the 
new conserved quantity, but the primitive values. 

 

 

 For spatially higher order implementations, we have: 
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where F + r.dF/dr is the reconstructed value at the center of the cell face. 
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Implicit formulation of EFM 

 For large CFL numbers, our first order treatment in time is inappropriate. We 
employ the second order Adams-Moulton formula to allow 2nd order in time 
and space: 
 
 
 
 
 
 

 The 2nd order Adams-Moulton scheme is much more accurate in time than 
the (explicit) 2nd order Adams-Bashforth technique while incurring very little 
additional computational expense. 
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Implicit Formulation of EFM 

 Hence, for a 1D problem with N cells, x – our solution vector - will contain 3N 
elements. 

 

 Since our system is non-linear, we’ll use a Newton-Raphson type solver to evolve 
our solution x: 

 

 
                 where J is the Jacobian of R(x) and x* is our new estimate of x. 

 It turns out this approach doesn’t always work – but we will return to this point 
later on. 

𝑑𝑑∗ = 𝑑𝑑 − 𝐽𝐽−1𝑅𝑅(𝑑𝑑) 
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Implicit Formulation of EFM 

 The Jacobian J can be written as: 
 
 
 
 

 There are two methods we might evaluate dRi/dxj: 

 

 Numerically – using a finite difference evaluation of R and x.  
 

 Analytically – using the analytical value of dR/dx derived from our governing 
equations. 
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Implicit Formulation of EFM 

 On flows with unstructured grids and/or multiple 
unpredictable boundary types, the analytical 
form of J is too troublesome. 

 

 We can see this by examining the shape of J 
(RHS). 

 

 Hence, this work focuses on the application of a 
finite difference method to solve for dR/dx – 
hence, this is a pseudo-Newton Raphson method. 
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Implicit Formulation 

 The computation of                  does not require the actual inversion 
of the J matrix. We simply require the solution to the               
systems of equations. 

 

 An iterative approach may be employed: the J matrix is positive 
definite but is not symmetrical. Hence, we have a large number of 
options, but we have decided on the BiCG and BiCGstab 
methods. 

 

 Both of these have varying suitability to GPU computation. 

 

 

𝐽𝐽−1𝑅𝑅(𝑑𝑑) 
𝐽𝐽∆𝑑𝑑 = 𝑅𝑅 

 The first annual meeting of applied mathematics: Frontier aspects of applied mathematics, NTU, 6th Dec. 2015. 



Solution Technique 

 The computation of the unsteady solution 
requires the nested application of the 
BiCG / BiCGstab  within the Newton-
Raphson algorithm. 

 In practice, 3-5 Newton-Raphson iterations 
is sufficient to converge on x*. 
 

Start 

Initialize 

t < T? NR = 0 

NR < 
MAX? 

Compute R(x*) 
Compute J(R(x*)) 

dx*=J-1R(x*) (BiCGstab) 
x* = x* + dx* 

End 

It helps that the 
initial guess for 
both the solution 
to x* (for each NR 
iteration) and J-1R 
is based on the 
previous iterations 
solution. 
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Solution Technique 

 The BiCGStab method is chosen to find the 
solution to our solution change (dx*) within 
each Newton-Raphson iteration. 

 

 This approach was selected primarily due 
to the associated advantages which arise 
when performing parallelization of the 
scheme using heterogeneous devices. 

 

 We’ll most likely want a preconditioner (as 
shown here) – we will visit this later as well. 
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Parallelization 

 The algorithm has been parallelized using OpenMP for conventional CPU and the 
Intel Phi Coprocessor, in addition to Graphics Processing Units using CUDA. 

 

 Today’s talk will focus on CUDA (Compute Unified Device Architecture) which 
allows general purpose computation on NVIDIA GPU devices. 

 

 While our lab has many various GPU’s, today’s talk will focus on the GTX-Titan: 
 

 

 

 

Number of CUDA cores: 2688 cores 
Core frequency: 0.83 GHz 
Memory bandwidth: 288 GB/sec 
Amount of DDR5 ram: 6 GB 
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Parallelization 

 The parallelization strategy for CUDA is performed through the application 
of kernels for each key part of the algorithm: 
 Compute_Flux<<< >>>  Computes the flux across each cell interface. 
 Compute_Residual<<< >>>  Computes the residual within each cell based on 

the fluxes.  
 Compute_J<<< >>>  Computes the Jacobian for each cell based on finite 

difference approximations for each variable within the cell and its attached 
neighbours. 

 BiCG and BiCGstab kernels  Numerous kernels for computing matrix-vector, 
vector-vector and dot product computations. 
 

 A device function – callable only by GPU kernels – called GPUCalcFlux() is 
employed to compute the flux of conserved quanties by the Compute_Flux 
and Compute_Residual kernels. 
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Parallelization 

 Each of these functions has an accompanying parallel efficiency: 

 
 Compute_Flux<<< >>>  Embarrassingly parallel, but requires poorly coalesced 

memory access. 

 Compute_Residual<<< >>>  Embarrassingly parallel, but requires poorly 
coalesced memory access.  

 Compute_J<<< >>> Embarrassingly parallel, but requires poorly coalesced 
memory access.  

 BiCG and BiCGstab kernels  A large number of kernels make up the 
computation. For BiCGstab, most are easily parallelized. However, BiCG relies 
upon the dot product, which requires parallel reduction (i.e. poor parallel 
efficiency). 

 The first annual meeting of applied mathematics: Frontier aspects of applied mathematics, NTU, 6th Dec. 2015. 



Now for the real questions... 

 There are several issues which will pertain to the success of this 
implementation: 

 
 Will the Pseudo-Newton Raphson implementation shown here behave as we 

expect? (Or, will it give us the solution we want?) 

 

 The Condition number of J will influence our solution time and general ease of 
computation. Which controllable simulation parameters influence J? 

 

 Does the size of our timestep / CFL influence the physical properties of the 
solution? In what way? 
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Newton-Raphson Solver 

 Review our equation for our pseudo NR solver: 

 

 

 In our case, x* must remain positive (for density and temperature) – the EFM 
fluxes cannot be computed for negative temperatures, for example. And 
besides, they are non-physical (separate issue). 

 

 The Newton-Raphson does not care about your need to keep a positive x. 
There are no active controls on the solver, and nothing stopping the solver 
taking a trip through negative x space on its way to the solution. 
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𝑑𝑑∗ = 𝑑𝑑 − 𝐽𝐽−1𝑅𝑅(𝑑𝑑) 



Newton-Raphson Solver 

 Hence, we need to modify the 
original N-R algorithm slightly to 
prevent it from computing non-
physical solutions on its way to the 
physical solution. 

 

 We rewrite our equation as: 

 

 Where alpha is computed as: 
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𝑑𝑑∗ = 𝑑𝑑 − 𝛼𝛼 𝐽𝐽−1𝑅𝑅 𝑑𝑑  

𝛼𝛼 =
𝑑𝑑 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀

2 ∆𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀
 



Newton-Raphson Solver 

 Explain a little: 

 

 

 To prevent NR from causing 
negative x values, the value of ∆𝑑𝑑 
must be less than x. 

 

 Hence, we find the largest ∆𝑑𝑑 in 
the solution (inside element Imax) 
and use a safety factor of 2, just to 
be sure.  
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𝑑𝑑∗ = 𝑑𝑑 − 𝛼𝛼 𝐽𝐽−1𝑅𝑅 𝑑𝑑 = 𝑑𝑑 − 𝛼𝛼∆𝑑𝑑 



Newton-Raphson Solver 

 We still need to be careful – as we 
get closer to the solution, the value 
of alpha explodes: 

 

 

 Hence, we need to limit alpha to a 
maximum value – the safest and 
most mathematically correct limit is 
1. 

 Practice with this solver shows us 
this is the best choice (not > 1). 
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𝑑𝑑 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 ≫ ∆𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 𝛼𝛼 =
𝑑𝑑 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀

2 ∆𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀
 



Influence of CFL 

 The first mission of this research was to determine (i) the influence of CFL 
number of the physical results, and (ii) the influence of CFL number on the 
Condition number of J, which in-turn has consequences for computational 
time. 

 To demonstrate this influence, we will look at solutions to Sod’s 1D shock 
problem (𝛾𝛾 = 1.4). 
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𝜌𝜌,𝜌𝜌,𝑇𝑇 = 10,0,1  𝜌𝜌,𝜌𝜌,𝑇𝑇 = 1,0,1  



Influence of CFL 

 We ran a large number 
of cases, over varying 
orders of spatial and 
temporal accuracy for 
various CFL numbers. 

 

 There were – roughly 
speaking – 4 CFL 
numbers used: 0.5, 2.5, 5 
and 10 (approximately). 
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Influence of CFL - Results 

 Considering the first 4 
cases – first order accurate 
in both time and space – 
and we obtain the 
following results. 
 

 We can see that larger CFL 
numbers result in excessive 
diffusion. 
 

 This is a result of the free 
flight assumption which 
forms the core of the EFM 
approach – or is it? 
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Influence of CFL - Results 

 As the CFL increases, 
particles – these are 
imaginary particles, of 
course – are allowed to 
travel further and further. 

 Hence, these results 
actually approach a 
result which might be 
obtained for increasingly 
rarefied flows. 

 We might be mistaken 
into thinking that this 
result is due to the 
physical nature of the 
solver.... (mistake) 
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Influence of CFL - Results 

 We also see that the CFL number has an impact on the computational time 
required – through the Condition number of the Jacobian matrix J. 

 

 Increasing the CFL from ~0.5 to ~9 leads to an average Condition number 
increase of ~x8 times. (A seemingly good deal) 

 

 Let’s have a look at the convergence properties.... 
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Influence of CFL - Results 

 We see that there is approximately a 10x in the number of BiCGstab iterations 
required for the larger CFL. 
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Case 1 (CFL ~ 0.5) Case 4 (CFL ~ 9) 

Here I 
neglected to 
mention that I 
am using 
BiCGStab with 
a Jacobi 
preconditioner. 
 
Sorry.  



Influence of Spatial Accuracy 

 Very few people employ 
a (spatially) first order 
accurate solver.  

 Hence, we also need to 
investigate the influence 
the 2nd order extension 
(in space) plays on the 
results and convergence. 

 Let’s have a look at 1st 
order in time, 2nd order in 
space results.  
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 We can see that increasing the spatial accuracy while maintaining 
the temporal accuracy does help – but not for larger CFL numbers. 
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Influence of Spatial Accuracy 



 We also can see that the extension to higher spatial accuracy – 
through reconstruction of split fluxes F – has a negative influence on 
the size of the Condition number of J. 

 

 Here, going from a CFL number of 0.5 to ~9, we see an increase in 
the Condition number of ~25x. Again, this is after we apply a 
preconditioner to the problem. 

 The first annual meeting of applied mathematics: Frontier aspects of applied mathematics, NTU, 6th Dec. 2015. 

Influence of Spatial Accuracy 



 Under severe conditions, the BiCGstab method does not converge 
when a 2nd order (space) / 1st order (time) solver is applied. 
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Influence of Spatial Accuracy 

Case 5 (CFL = 0.5) Case 8 (CFL = 9) 



Influence of Temporal Accuracy 

 Until now, the presented 
results employ a 1st order 
accurate time 
discretization (for the 
sake of analysis). 

 

 Let’s see the influence of 
the 2nd order accuracy in 
time implementation. 
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Influence of Temporal Accuracy 

 We can see that the 
solution is much better 
behaved – but we have 
introduced some stable 
(non-growing) overshoot 
behavior similar to Gibbs 
phenomenon. 

 The amount of introduced 
(numerical) diffusion from 
the use of larger CFL 
numbers has been 
negated. 

 Hence, the diffusion 
observed earlier was not 
(only) due to the physical 
nature of the solver. 
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Influence of Temporal Accuracy 
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 The increase in temporal accuracy has another benefit – we 
decrease the condition number of the J matrix. 

 Were, we have moved from a 25x increase to a ~6.5x increase! 

 As a result, we can see that implementing a 2nd order in time solver 
leads to a significant decrease in computational time when 
compared to a first order in time implementation.  
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Influence of Temporal Accuracy 



 Compare the convergence properties: 
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Influence of Temporal Accuracy 

Case 8 (CFL = 9) Case 12 (CFL = 10) 



Steady 2D Flow - Test 

 To test the application of this approach to steady flows, I trust 2D test cases most. 

 Here, we use hypersonic (M=3) flow over a forward facing step. 

 The first annual meeting of applied mathematics: Frontier aspects of applied mathematics, NTU, 6th Dec. 2015. 

Mach No = 3 



Steady 2D Flow - Test 

 The BiCGstab convergence 
behavior in this problem was 
very nice. 

 Great care had to be taken, 
however – this was only due to 
the very small Newton-Raphson 
steps taken at the start. 

 For larger CFL numbers in 
general – which includes 
steady flows – alpha is 
important in maintaining 
stability: 
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𝑑𝑑∗ = 𝑑𝑑 − 𝛼𝛼 𝐽𝐽−1𝑅𝑅 𝑑𝑑  



Results and Parallel Performance 

 In order to make sense of the parallel 
performance, we need an estimate of 
the breakdown of computational 
expense. 

 The flux computation phase represents 
the majority of the computational effort. 

 The good news – the Jacobian 
Evaluation and Flux computation phases 
are embarrassingly parallel. 

Breakdown of Computational Expense 

BiCGstab Jacobian Evaluation Flux Computation

15% 

49% 
36% 
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Results and Parallel Performance 

 The overall computational speedup can 
be shown in terms of the speedup for each 
component: 
 
 
 
 
 
 
 

 The performance increases further for 
structured grids. 

Breakdown of Computational Expense 

BiCGstab Jacobian Evaluation Flux Computation

15% 

49% 
36% 

Component Flux Jacobian BiCGstab Total 
CPU time 21.2s 15.5s 6.3s 43s 
GPU time 0.38s 0.28s 0.18s 0.85s 
Speedup ~55x ~55x ~35x ~50x 

3D unstructured problem using GTX-Titan 
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Results and Parallel Performance 

 Of course, we can apply this to other steady problems on different 
heterogeneous devices... 

GPU 
Parallelization 

Intel PHI 
Parallelization 

This results in the 
requirement for 
more NR steps and 
BiCGstab steps. 
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Wrapping thing up.. 

 In this work we’ve developed a family of implicit and explicit FVM 
solvers for parallelization on various heterogeneous parallel computing 
architectures. 

 The work presented today showed some of the things we’ve 
discovered about the EFM (KFVS) solver applied to Implicit 
computation – particularly in terms of the role the spatial and temporal 
order of accuracy plays on the computational effort required for the 
solution. 

 We conclude that higher orders in spatial accuracy result in a J matrix 
with a higher Condition number, while higher orders in time result in 
lower condition numbers. (Influence of Time  > Space, here). 

 The goal – conclude, for application on GPU devices – which is a better 
approach – explicit or implicit. 
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Questions? 

 Contact Details: Prof. Matthew Smith, NCKU, msmith@mail.ncku.edu.tw 
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