Analysis of Non-linear Implic it Solutions to the Euler Equations for Hypersonic and Shocked Fows

Prof. Matthew Smith
Department of Mechanical Eng ineering, NCKU

Acknowledgements

- I'd like to thank the organizers for the invitation to present my work.

Background

- Computational Fluid Dyna mics (CFD) forms one of the core disc iplines of modem engineering:

Background

- The Finite Volume Method (FVM) is a conservative approach which aimsat solving equations based on their integral form:

$$
\frac{\partial}{\partial t} \oint U d V+\oint F \cdot n d S=0
$$

Where U is a vector of conserved quantities, and F is the associated vector of Fluxes of U a cross surface $d S$.

- The core of the approach lies on the computation of fluxes at cell interfaces \rightarrow these are then used to update the average conserved quantity in each control volume (or cell):

$$
\frac{\partial \bar{U}}{\partial t}=-\frac{1}{V} \sum_{i=1}^{N F} F_{i} \cdot n_{i} A_{i}
$$

Background

- For the purpose of today's presentation, we will restrict our investigations to the Euler Equations - for the compressible flow of an ideal, inviscid gas.
- These can be written in PDE form as:

$$
\frac{d}{d t}[U]+\frac{d}{d x}[F]=\frac{d}{d t}\left[\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right]+\frac{d}{d x}\left[\begin{array}{c}
\rho u \\
\rho u^{2}+P \\
\rho u v \\
u(E+P)
\end{array}\right]+\frac{d}{d y}\left[\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+P \\
v(E+P)
\end{array}\right]=0
$$

- In order to apply the Finite Volume Method, we need to find a way to compute the fluxes F acrosseach cell interface \rightarrow EFM.

Background

- Today'stalk focuses on the application of a kinetic-theory based method to the application of a transient FVM solver.
- The method is Pullin's Equilibrium Rux Method, or EFM, which computes fluxes a cross cell interfaces by taking moments a round the MaxwellBoltzmann equilibrium partic le distribution function.
- Since this time, several researchers have proposed advancements of this tec hnique - however, we will see that EFM serves as a useful start point for our investigation.

Background

- The Maxwell-Boltzmann probability distribution function goveming molecular velocities of a gas in themal equilibrium can be written in 1D form as:

$$
f(v)=\frac{1}{\sqrt{2 \pi s}} \exp \left[\frac{-(v-\bar{v})^{2}}{2 s^{2}}\right]
$$

- The flux of any conserved quantity can be computed by taking moments a round this distribution function:

$$
F=\int_{-\infty}^{\infty} f\left(v_{n}\right) v_{n} Q(U) d v_{n} \quad Q=\left\{\rho, \rho v_{n}, \rho v_{p}, \rho\left(0.5 V^{2}+E_{i n}\right)\right\}^{T}
$$

- The EFM approach starts by splitting F into a forward and backward part:

$$
F=F^{-}+F^{+}=\int_{-\infty}^{0} f\left(v_{n}\right) v_{n} Q(U) d v_{n}+\int_{0}^{\infty} f\left(v_{n}\right) v_{n} Q(U) d v_{n}
$$

Background

- We can see that F^{+}describes fluxes due to particles with a positive velocity, while F- desc ribes fluxes due to partic les moving with a negative velocity.
- Pullin proposed that, if particles were to move in free flight over the course of a time step, that positive moving partic les must originate from the left hand side of an interface (and vice versa for negative moving particles)
- This gives us the split fluxes as:

$$
F^{+}=\int_{0}^{\infty} f\left(v_{n}\right) v_{n} Q\left(U_{L}\right) d v_{n} \quad F^{-}=\int_{\infty}^{0} f\left(v_{n}\right) v_{n} Q\left(U_{R}\right) d v_{n}
$$

Background

- Note: This means that the EFM approach does not allow the evolution of the particle velocity distribution over the time which partic les travel.
- This results in excessive numerical diffusion - partic les are allowed to "fly" unhindered over a timestep.
- Several authors have proposed fixesto this problem by using the BGK / Boltzmann Equations to evolve the partic le distribution functions overtime (and space) to obtain a better result (not investigated here).

Disc retization of the FVM

- Examine fora second this discretization:

$$
\frac{\partial \bar{U}}{\partial t}=-\frac{1}{V} \sum_{i=1}^{N F} F_{i} \cdot n_{i} A_{i}
$$

- We can solve for our value of \bar{U} at time level $k+1$ by:
- Using values of both \bar{U} and F at time levels $\mathrm{k} \rightarrow$ This leads to an explicit approach.
- Using values of \bar{U} at time level k and F at time levels $k+1 \rightarrow$ This leads to an implicit approach.

Disc retization of the FVM

- Let's write the equations out for clarity - in 1D, we may write:
- Explicit Form: $\frac{\bar{U}_{i}^{k+1}-\bar{U}_{i}^{k}}{\Delta t}+\frac{F_{i+1 / 2}^{k}-F_{i-1 / 2}^{k}}{\Delta x}=0$
- Implicit Form: $\frac{\bar{U}_{i}^{k+1}-\bar{U}_{i}^{k}}{\Delta t}+\frac{F_{i+1 / 2}^{k+1}-F_{i-1 / 2}^{k+1}}{\Delta x}=0$
- Fluxes at cell interfaces (i.e. $i+1 / 2$) a re reconstructed:

$$
F_{i+x}^{+} \approx F_{i}^{+}+x\left(\frac{d F^{+}}{d x}\right)_{i, e f f}+\text { H.O.T } \quad F_{i+x}^{-} \approx F_{i}^{-}+x\left(\frac{d F^{-}}{d x}\right)_{i, e f f}+\text { H.O.T }
$$

- Evaluations of ($\mathrm{dF}^{+} / \mathrm{dx}$) and ($\mathrm{dF} / \mathrm{dx}$) use slope limiting functions to mainta in positivity.

Application of Explicit FVM

- In the past, we have employed explicit tec hniques for application to parallel computing due to the ease of parallelization.
- The result - a fa mily of effic ient solvers which run on both the Intel Xeon Phi and the GPU (AMD and Nvidia devices)

This simulation required less than 3 minutes - from start to finish - using a GTX-Titan.

Application of Explicit FVM

- When Cartesian grids where employed, the speedup - ratio of computational times for a single CPU core to that of the GPU - was computed to be very large.

Speedup for various test cases for UEFM Solver

Drawbacks of Explicit Approach

- There are disadvantages to using Explic it time-stepping approaches:
- The size of the time step of limited based on the stability requirement of the smallest cell in the flow field - which is often several orders of magnitude sma ller than the average cell size when using a daptive grids.
- We cannot solve for a steady flow*.
- One possible way we can avoid these problems is to use an implicit timestepping procedure to solve the goveming equations.

Implic it formulation of EFM

- A casual inspection of our goveming equations reveals they are funda menta lly non-linear:

$$
\frac{d}{d t}[U]+\frac{d}{d x}[F]=\frac{d}{d t}\left[\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right]+\frac{d}{d x}\left[\begin{array}{c}
\rho u \\
\rho u^{2}+P \\
\rho u v \\
u(E+P)
\end{array}\right]+\frac{d}{d y}\left[\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+P \\
v(E+P)
\end{array}\right]=0
$$

- In addition, our split fluxes - which are used to compute net fluxes in our discretization - conta in $\operatorname{erf}(x)$ and $\exp \left(-x^{2}\right)$ terms, which a re also non linear.
- This gives us - for example, in a 1D problem:

$$
\frac{\bar{U}_{i}^{k+1}-\bar{U}_{i}^{k}}{\Delta t}+\frac{\left[\left(F_{i}^{+, k+1}+F_{i+1}^{-, k+1}\right)-\left(F_{i}^{-, k+1}+F_{i-1}^{-, k+1}\right)\right]}{\Delta x}=0
$$

$$
F_{i}^{+} \approx A \cdot \operatorname{erf}\left(M_{i}\right)+B \cdot \exp \left(-M_{i}^{2}\right) \quad F_{i}^{-} \approx C \cdot \operatorname{erf}\left(M_{i}\right)+D \cdot \exp \left(-M_{i}^{2}\right)
$$

Implic it formulation of EFM

- It should be easy to see that a lineardecomposition in this case is impossible.
- Rewrite the goveming equations into residual form:

$$
R=\frac{\partial \bar{U}}{\partial t}+\frac{1}{V} \sum_{i=1}^{N F} F_{i} \cdot n_{i} A_{i}
$$

- We need an approximation for the time derivative. One way might be:

$$
R=\left(\overline{\frac{U^{k+1}}{}-\overline{U^{k}}} \overline{\Delta t}\right)+\frac{1}{V} \sum_{i=1}^{N F} F_{i}\left(\overline{U^{k+1}}\right) \cdot n_{i} A_{i}
$$

where k indicates the time-level of the solution and A, V do not change in time.

Implic it formulation of EFM

- We need to solve our unknowns - which, interesting enough, a ren't the new conserved quantity, but the primitive values.

$$
x=\left[\begin{array}{l}
\rho \\
u \\
T
\end{array}\right] \quad R(x)=\left(\frac{\overline{U(x)^{*}}-\overline{U(x)}}{\Delta t}\right)+\frac{1}{V} \sum_{i=1}^{N F} F_{i}\left(x^{*}\right) \cdot n_{i} A_{i}
$$

- For spatially higher order implementations, we have:

$$
R(x)=\left(\frac{\overline{U(x)^{*}}-\overline{U(x)}}{\Delta t}\right)+\frac{1}{V} \sum_{i=1}^{N F}\left[F_{i}\left(x^{*}\right)+r_{i} \frac{d F_{i}\left(x^{*}\right)}{d r}\right] \cdot n_{i} A_{i}
$$

where $F+r . d F / d r$ is the reconstructed value at the center of the cell face.

Implic it formulation of EFM

- For large CFL numbers, our first order treatment in time is ina ppropriate. We employ the second order Adams-Moulton formula to a llow $2^{\text {nd }}$ order in time and space:

$$
R(x)=\left(\frac{\overline{U(x)^{*}}-\overline{U(x)}}{\Delta t}\right)+\frac{1}{2}\left[\frac{1}{V} \sum_{i=1}^{N F} F_{i}(x) \cdot n_{i} A_{i}\right]+\frac{1}{2}\left[\frac{1}{V} \sum_{i=1}^{N F} F_{i}\left(x^{*}\right) \cdot n_{i} A_{i}\right]
$$

_— Saved from previous time step
__ Implic itly computed

- The $2^{\text {nd }}$ orderAdams-Moulton scheme is much more accurate in time than the (explicit) $2^{\text {nd }}$ orderAdams-Bashforth technique while incuming very little additional computational expense.

Implic it Formulation of EFM

- Hence, for a 1D problem with N cells, x - our solution vector - will contain $3 N$ elements.
- Since our system is non-linear, we'll use a Newton-Raphson type solver to evolve our solution x :

$$
x^{*}=x-J^{-1} R(x)
$$

where J is the J acobian of $R(x)$ and x^{*} is our new estimate of x.

- It tums out this a pproach doesn't always work - but we will retum to this point lateron.

Implic it Formulation of EFM

- The J acobian J can be written as:

$$
J=\left[\begin{array}{ccc}
\frac{d R_{1}}{d x_{1}} & \cdots & \frac{d R_{1}}{d x_{M}} \\
\vdots & \ddots & \vdots \\
\frac{d R_{M}}{d x_{1}} & \cdots & \frac{d R_{M}}{d x_{M}}
\end{array}\right]
$$

- There are two methods we might evaluate $d R_{i} / d x_{j}$:
- Numeric ally - using a finite difference evaluation of R and x .
- Analytic ally - using the a nalytic al value of $d R / d x$ derived from our goveming equations.

Implic it Formulation of EFM

- On flows with unstructured grids and/or multiple unpredictable boundary types, the a nalytic al form of J is too troublesome.
- We can see this by exa mining the shape of J (RHS).
- Hence, this work focuses on the application of a finite difference method to solve for $\mathrm{dR} / \mathrm{dx}$ hence, this is a pseudo-Newton Raphson method.

Implic it Formulation

- The computation of $J^{-1} R(x)$ does not require the actual inversion of the J matrix. We simply require the solution to the $J \Delta x=R$ systems of equations.
- An iterative approach may be employed: the J matrix is positive definite but is not symmetrical. Hence, we have a large number of options, but we have decided on the BiCG and BiCGstab methods.
- Both of these have va rying suitability to GPU computation.

Solution Technique

- The computation of the unsteady solution requires the nested application of the requiresthe nested applic ation of the
BiC / BiC Gstab within the NewtonRaphson a lgorithm.
- In practice, 3-5 Newton-Raphson iterations is suffic ient to converge on x^{*}.

Compute $\mathrm{R}\left(\mathrm{x}^{*}\right)$
Compute J ($\mathrm{R}\left(\mathrm{x}^{*}\right)$)

$$
\begin{gathered}
d x^{*}=-1 R\left(x^{*}\right)(\text { BiC G sta b) } \\
x^{*}=x^{*}+d x^{*}
\end{gathered}
$$

Solution Technique

- The BiCGStab method is chosen to find the solution to our solution change ($\mathrm{d} \mathrm{x}^{*}$) within each Newton-Raphson iteration.
- This approach was selected prima rily due to the associated advantages which a rise when performing parallelization of the scheme using heterogeneous devices.

We'll most likely want a preconditioner (as shown here) - we will visit this later as well.

```
Algorithm 1: Right preconditioned BiCGStab
    : \(r_{o}=b-A x_{o} ; x_{o}\) taken from previous time step's solution, \(\overline{r_{0}}=r_{o}\)
2: \(p_{o}=r_{o}\)
3: for \(j=0,1\) until convergence or maximum iterations, do
        \(\widetilde{p_{j}}=M^{-1} p_{j}\)
        \(\alpha_{j}=\left(r_{j}, \overline{r_{0}}\right) /\left(A \widetilde{p_{j}}, \overline{r_{0}}\right)\)
        \(s_{j}=r_{j}-\propto_{j} A \widetilde{p_{j}}\)
        \(\tilde{s}_{j}=M^{-1} s_{j}\)
        \(w_{j}=\left(A \tilde{s}_{j}, s_{j}\right) /\left(A \tilde{s}_{j}, A \tilde{s}_{j}\right)\)
        \(x_{j+1}=x_{j}+\propto_{j} \widetilde{p}_{j}+w_{j} \tilde{s}_{j}\)
        \(r_{j+1}=s_{j}-w_{j} A \tilde{s}_{j}\)
        \(\beta_{j}=\left(r_{j+1}, \bar{r}_{0}\right) /\left(r_{j}, \bar{r}_{0}\right) \cdot \propto_{j} / w_{j}\)
        \(p_{j+1}=r_{j+1}+\beta_{j}\left(p_{j}-w_{j} A \widetilde{p_{j}}\right)\)
    end for
```


Pa ra llelization

- The algorithm has been parallelized using OpenMP for conventional CPU and the Intel Phi Coprocessor, in addition to Graphics Processing Units using CUDA.
- Today's talk will focus on CUDA (Compute Unified Device Architecture) which allows general pupose computation on NVIDIA GPU devices.
- While our lab has many various GPU's, today's talk will focus on the GTX-Tita n:

Number of CUDA cores: 2688 cores
Core frequency: 0.83 GHz
Memory band width: 288 GB/sec
Amount of DDR5 ram: 6 GB

Pa ra llelization

- The parallelization strategy for CUDA is performed through the application of kemels for each key part of the a lgorithm:
- Compute_Flux<<<>>> \rightarrow Computes the flux ac ross each cell interface.
- Compute_Residual $\lll \ggg \rightarrow$ Computes the residual within each cell based on the fluxes.
- Compute 」 $\lll \ggg \rightarrow$ Computes the J acobian for each cell based on finite difference approximations for each variable within the cell and its attached neighbours.
- BiC G and BiC Gstab kemels \rightarrow Numerous kemels for computing matrix-vector, vector-vector and dot product computations.
- A device function - callable only by GPU kemels - called GPUC a lc Flux() is employed to compute the flux of conserved quanties by the Compute_Flux a nd Compute_Residual kemels.

Pa ra llelization

- Each of these functions has an accompanying parallel efficiency:
- Compute_Flux<<<>>> \rightarrow Embarrassingly parallel, but requires poorly coalesced memory access.
- Compute_Residual<<<<>>> Embarrassingly parallel, but requires poorly coalesced memory access.
- Compute ل <<<>>> Emba rassingly parallel, but requires poorly coalesced memory access.
- BiC G and BiC Gstab kemels \rightarrow A large number of kemels make up the computation. For BiC Gstab, most are easily pa rallelized. However, BiC G relies upon the dot product, which requires parallel reduction (i.e. poor parallel effic iency).

Now for the real questions...

- There are several issues which will perta in to the success of this implementation:
- Will the Pseudo-Newton Raphson implementation shown here behave as we expect? (Or, will it give us the solution we want?)
- The Condition number of J will influence our solution time and general ease of computation. Which controllable simulation parameters influence J?
- Does the size of our timestep / CFL influence the physical properties of the solution? In what way?

Newton-Raphson Solver

- Review our equation for our pseudo NR solver:

$$
x^{*}=x-J^{-1} R(x)
$$

- In our case, x^{*} must rema in positive (for density a nd temperature) - the EFM fluxes cannot be computed for negative temperatures, for example. And besides, they are non-physic al (separate issue).
- The Newton-Raphson does not care about your need to keep a positive x. There are no active controls on the solver, and nothing stopping the solver taking a trip through negative x space on its way to the solution.

Newton-Ra phson Solver

- Hence, we need to modify the original N-R a lgorithm slightly to prevent it from computing nonphysical solutions on its way to the physic al solution.
- We rewrite our equation as:

$$
x^{*}=x-\alpha\left(J^{-1} R(x)\right)
$$

- Where alpha iscomputed as:

$$
\alpha=\frac{\left|x\left(I_{M A X}\right)\right|}{2\left|\Delta X_{M A X}\right|}
$$

```
Algorithm 2: Implicit FVM using EFM and BiCGstab
1: }X\mathrm{ set from initial conditions, }\mp@subsup{X}{\mathrm{ old }}{}=
2: for i=0,1 until desired time has been reached, do
4:}\quad\mp@subsup{X}{\mathrm{ old }}{=}=
5: Compute \nablaF ( }\mp@subsup{X}{\mathrm{ old }}{}
6: for j = 0, 1,..until maximum no. of N-R iterations, do
Compute R}(X)=\frac{(U(X)-U(\mp@subsup{X}{\mathrm{ old }}{\prime})}{\Deltat}+0.5\nablaF(X)+0.5\nablaF(\mp@subsup{X}{\mathrm{ old }}{}
Evaluate J 泣 nerically over all M variables
Compute preconditioner M}\mp@subsup{M}{j}{}=\operatorname{diag}(\mp@subsup{J}{j}{}
H Use Algorithm 1 (BiCGstab) to iteratively solve for }\Delta\mp@subsup{X}{j}{
[\DeltaX max},\mp@subsup{I}{\operatorname{max}}{}]=\operatorname{max}(|\Delta\mp@subsup{X}{j}{}|
\mp@subsup{\propto}{j}{}=|X(I
if j=1, \propto
Xj+1}=\mp@subsup{X}{J}{}+\mp@subsup{\propto}{j}{}\Delta\mp@subsup{X}{j}{
if }\Delta\mp@subsup{X}{\mathrm{ max }}{}/X(\mp@subsup{I}{\mathrm{ max }}{})<1\mp@subsup{0}{}{-4}\mathrm{ break
end for
: end for
```


Newton-Ra phson Solver

- Explain a little:

$$
x^{*}=x-\alpha\left(J^{-1} R(x)\right)=x-\alpha \Delta x
$$

To prevent NR from causing negative x values, the value of Δx must be less than \mathbf{x}.

- Hence, we find the largest Δx in the solution (inside element $I_{\max }$) and use a safety factor of 2 , just to be sure.

```
Algorithm 2: Implicit FVM using EFM and BiCGstab
1: }X\mathrm{ set from initial conditions, }\mp@subsup{X}{\mathrm{ old }}{}=
2: for i=0,1 until desired time has been reached, do
4:}\quad\mp@subsup{X}{\mathrm{ old }}{=}=
5: Compute }\nablaF(\mp@subsup{X}{\mathrm{ old }}{}
6: for j = 0, 1,..until maximum no. of N-R iterations, do
7: Compute R (X)}=\frac{(U(X)-U(\mp@subsup{X}{\mathrm{ old }}{\prime})}{\Deltat}+0.5\nablaF(X)+0.5\nablaF(X ( old 
8: Evaluate Jj numerically over all M variables
9: Compute preconditioner M}=\operatorname{Miag}(\mp@subsup{J}{j}{}
->Use Algorithm 1 (BiCGstab) to iteratively solve for }\Delta\mp@subsup{X}{j}{
[\Delta\mp@subsup{X}{\operatorname{max}}{},\mp@subsup{I}{\operatorname{max}}{}]=\operatorname{max}(|\Delta\mp@subsup{X}{j}{}|)
\mp@subsup{\alpha}{j}{}=|X(I
if j=1, \propto
X 
if }\Delta\mp@subsup{X}{\mathrm{ max }}{}/X(\mp@subsup{I}{\mathrm{ max }}{})<1\mp@subsup{0}{}{-4}\mathrm{ break
    end for
17: end for
```


Newton-Ra phson Solver

- We still need to be careful - as we get closer to the solution, the value of alpha explodes:
$a=\frac{\left|x\left(I_{M A X}\right)\right|}{2\left|\Delta X_{M A X}\right|}$

$$
x\left(I_{M A X}\right) \gg \Delta X_{M A X}
$$

- Hence, we need to limit alpha to a maximum value - the safest and most mathematic ally correct limit is 1.
- Practice with this solver shows us this is the best choice (not >1).

```
Algorithm 2: Implicit FVM using EFM and BiCGstab
1: }X\mathrm{ set from initial conditions, }\mp@subsup{X}{\mathrm{ old }}{}=
2: for i=0,1 until desired time has been reached, do
4: }\quad\mp@subsup{X}{\mathrm{ old }}{}=
Compute \nablaF ( }\mp@subsup{X}{\mathrm{ old }}{}\mathrm{ )
for j=0,1,..until maximum no. of N-R iterations, do
Compute R (X)=\frac{(U(X)-U(\mp@subsup{X}{\mathrm{ old }}{\prime})}{\Deltat}+0.5\nablaF(X)+0.5\nablaF(X ( old )
Evaluate J 泣 nerically over all M variables
Compute preconditioner M}\mp@subsup{M}{j}{}=\operatorname{diag}(\mp@subsup{J}{j}{}
->Use Algorithm 1 (BiCGstab) to iteratively solve for }\Delta\mp@subsup{X}{j}{
[\Delta\mp@subsup{X}{\operatorname{max}}{},\mp@subsup{I}{\operatorname{max}}{}]=\operatorname{max}(|\Delta\mp@subsup{X}{j}{}|)
\mp@subsup{\propto}{j}{}=|X(I
if j=1, \propto
Xj+1}=\mp@subsup{X}{J}{}+\mp@subsup{\propto}{j}{}\Delta\mp@subsup{X}{j}{
if }\Delta\mp@subsup{X}{\mathrm{ max }}{}/X(\mp@subsup{I}{\operatorname{max}}{})<1\mp@subsup{0}{}{-4}\mathrm{ break
end for
: end for
```


Influence of CFL

- The first mission of this research was to detemmine (i) the influence of CFL number of the physical results, and (ii) the influence of CFL number on the Condition number of J, which in-tum has consequences for computational time.
- To demonstrate this influence, we will look at solutions to Sod's 1D shock problem ($\gamma=1.4$).

$$
\begin{array}{l|l}
{[\rho, u, T]=[10,0,1]} & {[\rho, u, T]=[1,0,1]}
\end{array}
$$

Influence of CFL

- We ran a large number of cases, over varying orders of spatial and temporal accuracy for various CFL numbers.
- There were - roughly speaking - 4 CFL numbers used: 0.5, 2.5, 5 and 10 (approximately).

\begin{tabular}{|l|l|l|l|l|}

\hline Case` \& \begin{tabular}{l}
Time Step

Size

 \&

Spatial Order

of Accuracy

 \&

Temporal Order

of Accuracy
\end{tabular} \& Maximum CFL

\hline 1 \& $1 \mathrm{e}-3$ \& 1 \& 1 \& 0.47

\hline 2 \& $5 \mathrm{e}-3$ \& 1 \& 1 \& 2.34

\hline 3 \& $1 \mathrm{e}-2$ \& 1 \& 1 \& 4.62

\hline 4 \& $2 \mathrm{e}-2$ \& 1 \& 1 \& 8.97

\hline 5 \& $1 \mathrm{e}-3$ \& 2 \& 1 \& 0.47

\hline 6 \& $5 \mathrm{e}-3$ \& 2 \& 1 \& 2.36

\hline 7 \& $1 \mathrm{e}-2$ \& 2 \& 1 \& 4.68

\hline 8 \& $2 \mathrm{e}-2$ \& 2 \& 1 \& 9.01

\hline 9 \& $1 \mathrm{e}-3$ \& 2 \& 2 \& 0.47

\hline 10 \& $5 \mathrm{e}-3$ \& 2 \& 2 \& 2.36

\hline 11 \& $1 \mathrm{e}-2$ \& 2 \& 2 \& 4.92

\hline 12 \& $2 \mathrm{e}-2$ \& 2 \& 2 \& 10.18

\hline
\end{tabular}

Influence of CFL-Results

Case	Maximum CFL
1	0.47
2	2.34
3	4.62
4	8.97

- Considering the first 4 cases- first order accurate in both time and space and we obtain the following results.

We can see that largerCFL numbers result in excessive diffusion.

- This is a result of the free flight assumption which forms the core of the EFM approach - orisit?

Influence of CFL-Results

Case	Maximum CFL
1	0.47
2	2.34
3	4.62
4	8.97

- Asthe CFLincreases, particles-these are imaginary particles, of course - are allowed to travel further and further.
- Hence, these results actually approach a result which might be obtained for inc reasingly rarefied flows.
- We might be mistaken into thinking that this result is due to the physic al nature of the solver.... (mistake)

Influence of CFL - Results

- We also see that the CFL number has an impact on the computational time required - through the Condition number of the J acobian matrix J.
- Increasing the CFL from ~ 0.5 to ~ 9 leads to an average Condition number inc rease of $\sim x 8$ times. (A seemingly good deal)
- Let's have a look at the convergence properties....

Case	Maximum CFL
1	0.47
2	2.34
3	4.62
4	8.97

	Case 1	Case 2	Case 3	Case 4
Normalized Average Condition	1	2.45	4.29	7.96
Number [i.e. cond($\left.\mathrm{M}^{-1} \mathrm{~J}\right)$]				
Accuracy - O(1) (time) / O(1) (space)				

Influence of CFL - Results

- We see that there is approximately a $10 x$ in the number of BiC Gstab iterations required for the larger CFL.

Influence of Spatial Accuracy

5	0.47
6	2.36
7	4.68
8	9.01

- Very few people employ a (spatially) first order accurate solver.
- Hence, we also need to investigate the influence the $2^{\text {nd }}$ orderextension (in space) plays on the results and convergence.
- Let's have a look at $1^{\text {st }}$ order in time, $2^{\text {nd }}$ order in space results.

Influence of Spatial Accuracy

- We can see that increasing the spatial accuracy while maintaining the temporal accuracy does help - but not for larger CFL numbers.

Influence of Spatial Accuracy

- We also can see that the extension to higher spatial accuracy through reconstruction of split fluxes F - has a negative influence on the size of the Condition number of J.
- Here, going from a CFL number of 0.5 to -9 , we see an increase in the Condition number of $\sim 25 x$. Again, this is after we apply a preconditioner to the problem.

	Case 5	Case 6	Case 7	Case 8
Normalized Average Condition	1.08	3.26	6.31	25.11
Number [i.e. cond(M-1J)]				
Accuracy - O(1) (time) / O(2) (space)				

Influence of Spatial Accuracy

- Under severe conditions, the BiCGstab method does not converge when a $2^{\text {nd }}$ order (space) / $1^{\text {st }}$ order (time) solver is applied.

[^0]
Influence of Temporal Accuracy

- Until now, the presented results employ a $1^{\text {st }}$ order accurate time disc retization (for the sake of a nalysis).
- Let's see the influence of the $2^{\text {nd }}$ orderaccuracy in time implementation.

Influence of Temporal Accuracy

- We can see that the solution is much better behaved - but we have introduced some stable (non-growing) overshoot behavior similarto Gibbs phenomenon.
- The a mount of introduced (numerical) diffusion from the use of largerCFL numbers has been negated.
- Hence, the diffusion observed earlier was not (only) due to the physical nature of the solver.

Influence of Temporal Accuracy

Influence of Temporal Accuracy

- The increase in temporal accuracy has a nother benefit - we decrease the condition number of the J matrix.
- Were, we have moved from a $25 x$ increase to a $-6.5 x$ increase!
- As a result, we can see that implementing a $2^{\text {nd }}$ order in time solver leads to a signific ant dec rease in computational time when compared to a first order in time implementation.

	Case 9	Case 10	Case 11	Case 12
Normalized Average Condition Number [i.e. cond(M-1J)] Accuracy - O(2) (time) / O(2) (space)	0.84	1.86	3.27	6.24

Influence of Temporal Accuracy

- Compare the convergence properties:

Steady 2D Flow - Test

- To test the application of this approach to steady flows, I trust 2D test cases most.
- Here, we use hypersonic ($M=3$) flow overa forward facing step.

Stea dy 2D Flow - Test

- The BiCGstab convergence beha vior in this problem was very nice.
- Great care had to be taken, however - this was only due to the very small Newton-Raphson steps taken at the start.
- For larger CFL numbers in general - which includes steady flows - alpha is important in ma inta ining stability:

$$
x^{*}=x-\alpha\left(J^{-1} R(x)\right)
$$

Results and Parallel Performance

- In orderto make sense of the parallel performance, we need an estimate of the breakdown of computational expense.
- The flux computation phase represents the majority of the computational effort.
- The good news - the Jacobian Evaluation a nd Flux computation phases are embarrassingly parallel.

Breakdown of Computational Expense

Results a nd Parallel Performance

- The overall computational speedup can be shown in terms of the speedup foreach component:

Component	Flux	Jacobian	BiCGstab	Total
CPU time	21.2 s	15.5 s	6.3 s	43 s
GPU time	0.38 s	0.28 s	0.18 s	0.85 s
Speedup	$\sim 55 \mathrm{x}$	$\sim 55 \mathrm{x}$	$\sim 35 \mathrm{x}$	$\sim 50 \mathrm{x}$
3D unstructured problem using GTX-Ttan				

- The performance increasesfurtherfor structured grids.

Results a nd Parallel Performance

- Of course, we can apply this to other steady problems on different heterogeneous devices...

Wrapping thing up..

- In this work we've developed a family of implicit and explicit FVM solvers for pa rallelization on va rious heterogeneous parallel computing a rc hitec tures.
- The work presented today showed some of the things we've disc overed about the EFM (KFVS) solver a pplied to Implic it computation - partic ularly in terms of the role the spatial and temporal order of accuracy plays on the computational effort required for the solution.
- We conclude that higher orders in spatial accuracy result in a J matrix with a higher Condition number, while higher orders in time result in lower condition numbers. (Influence of Time >Space, here).
- The goal - conclude, for application on GPU devices - which is a better approach - explic it or implic it.

Questions?

- Contact Details: Prof. Matthew Smith, NCKU, msmith@mail.ncku.edu.tw

[^0]: The first a nnual meeting of a pplied mathematics: Frontier aspects of a pplied mathematic s, NTU, 6th Dec . 2015.

